Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 261(Pt 1): 129700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278395

RESUMO

The exceptional antioxidant properties of beetroot (BR) and the cancer antiproliferative effects of chitosan nanoparticles (CS NP) have led to the synthesis of a BR@CS nanocomposite (NC) in this study. The novel BR@CS NC was applied to human epithelial colorectal adenocarcinoma (Caco-2), human epithelial ductal breast carcinoma (T-47D), and human epithelial lung carcinoma (A549) cells. SEM characterization of CS NP revealed a variety of particle shapes ranging from 20 to 58 nm in diameter. UV-VIS analysis confirmed the formation of the BR@CS NC, while FTIR analysis demonstrated strong hydrogen bonds between CS NP and BR. These bonds reduced the positive surface charge of CS NP, as indicated by zeta potential analysis. When applied to cancer cell lines at a concentration of 250 µg/mL, the BR@CS NC successfully eradicated 89 % of A549, 88 % of T-47D, and 83 % of Caco-2 cell lines. The cell death mode exhibited extensive, apoptotic, and massive necrotic changes in all cell lines treated with BR@CS NC. Caspase 3 (CasP3) and P53 levels were elevated in BR@CS NC-treated cells. This study merges BR's antioxidant and anti-inflammatory properties with the antiangiogenic mechanism and inhibition of tumors by CS NP, resulting in a unique and innovative strategy for cancer treatment.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Neoplasias , Humanos , Quitosana/química , Células CACO-2 , Antioxidantes/farmacologia , Nanopartículas/química , Nanocompostos/química
2.
Front Chem ; 11: 1115377, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817174

RESUMO

Carboxymethyl ß-cyclodextrin-nanochitosan-glutaraldehyde (CM-ßCD:nChi:Glu) terpolymer was prepared as a nano-adsorbent for the removal of the anionic textile dye, acid red 37. The terpolymer nanocomposite formation and characterization were clarified by FTIR, XRD, scanning electron microscopy, TEM, Brunauer-Emmett-Teller specific surface area (BET-SSA), and zeta potential. The removal of the textile dye was investigated by using the batch adsorption method, investigating the effect of pH, dye concentration, adsorbent dose, contact time, and temperature. The results revealed that the maximum removal efficiency of 102.2 mg/L of the dye is about 99.67% under pH 6.0, the optimal contact time is 5 min, and the adsorbent dosage is 0.5 g/L. At 29°C; the adsorption capacity increased from 81.29 to 332.60 mg/g when the initial concentration of the dye was increased from 40.97 to 212.20 mg/L. Adsorption kinetics fitted well with the pseudo-second-order model with a good correlation (R 2 = 0.9998). The Langmuir isotherm model can best describe the adsorption isotherm model. Based on the experimental results, the CM-ßCD:nChi:Glu terpolymer has a promising potential as an efficient novel adsorbent for the removal of textile dye acid red 37 from contaminated water. This study's preparation techniques and demonstrated mechanisms offer valuable insights into the adsorbent-adsorbate interactions mechanism, analysis, challenges, and future directions of beta-cyclodextrin/chitosan-based adsorbents in wastewater treatment.

3.
Chem Biol Interact ; 370: 110328, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36549637

RESUMO

Curcumin (CUR) is well known for its extraordinary benefits as an anti-cancer, anti-inflammatory, and wound healing agent. However, nano-formulation could maintain and regulate its pharmacological effect. Herein, we report the preparation of CUR/hydroxyapatite nanocomposite (CUR/HA NC) and its application in the protection of male Wistar rats from γ-irradiation carcinogenic consequences. TEM images of the nanocrystalline HA nanoparticles (NPs) had a rod-like form with average dimensions of 40±5 nm in length and 10 ± 5 nm in width. XRD analysis illustrated the formation of a single phase of hexagonal crystalline HA NPs. The presence of the CUR fingerprint is visible in its FTIR spectra of the CUR/HA NC. Biochemical analysis and histological examinations revealed that CUR/HA NC injection does not significantly affect non-irradiation rats compared to the control. However, when injected pre-irradiation, it controls the pro-inflammatory cytokines (tumor necrosis factor-alpha, interleukin-6) GSH level, kidney, and liver functions as proved by biochemical histopathological and immunohistochemical findings. This research introduces a novel effective protection modality for the γ-irradiation hazard via biocompatible CUR/HA NC injection.


Assuntos
Curcumina , Nanocompostos , Nanopartículas , Ratos , Masculino , Animais , Curcumina/farmacologia , Curcumina/química , Ratos Wistar , Durapatita , Nanopartículas/química , Anti-Inflamatórios , Nanocompostos/química
4.
Materials (Basel) ; 11(1)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29346268

RESUMO

The present work was targeted to design a surface against cell seeding and adhering of bacteria, Bacillus subtilis. A multi-walled carbon nanotube/titanium dioxide nano-power was produced via simple mixing of carbon nanotube and titanium dioxide nanoparticles during the sol-gel process followed by heat treatment. Successfully, quercetin was immobilized on the nanocomposite via physical adsorption to form a quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite. The adhesion of bacteria on the coated-slides was verified after 24 h using confocal laser-scanning microscopy. Results indicated that the quercetin/multi-walled carbon nanotube/titanium dioxide nanocomposite had more negativity and higher recovery by glass surfaces than its counterpart. Moreover, coating surfaces with the quercetin-modified nanocomposite lowered both hydrophilicity and surface-attached bacteria compared to surfaces coated with the multi-walled carbon nanotubes/titanium dioxide nanocomposite.

5.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 753-762, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770951

RESUMO

The aim of this study was directed to reveal the repulsive effect of coated glass slides by quercetin and its bio-inspired titanium oxide and tungsten oxide nanoparticles on physical surface attachment of Bacillus subtilis as an ab-initio step of biofilm formation. Nanoparticles were successfully synthesized using sol-gel and acid precipitation methods for titanium oxide and tungsten oxide, respectively (in the absence or presence of quercetin). The anti-adhesive impact of the coated-slides was tested through the physical attachment of B. subtilis after 24h using Confocal Laser Scanning Microscopy (CLSM). Here, quercetin was presented as a bio-route for the synthesis of tungsten mixed oxides nano-plates at room temperature. In addition, quercetin had an impact on zeta potential and adsorption capacity of both bio-inspired amorphous titanium oxide and tungsten oxide nano-plates. Interestingly, our experiments indicated a contrary effect of quercetin as an anti-adhesive agent than previously reported. However, its bio-inspired metal oxide proved their repulsive efficiency. In addition, quercetin-mediated nano-tungsten and quercetin-mediated amorphous titanium showed anti-adhesive activity against B. subtilis biofilm.


Assuntos
Bacillus subtilis/fisiologia , Aderência Bacteriana/efeitos dos fármacos , Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Quercetina/farmacologia , Adsorção , Bacillus subtilis/efeitos dos fármacos , Precipitação Química , Testes de Sensibilidade Microbiana , Nanopartículas/ultraestrutura , Óxidos/farmacologia , Quercetina/química , Termogravimetria , Titânio/farmacologia , Tungstênio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...